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An efficient multidimensional scheme is constructed for solving the compressible
Euler equations. It is deduced from a centered scheme of the Lax—Wendroff type
by using a special time-step in the numerical flux, namely a matricial characteristic
time-step. This produces a compact second-order upwinding in a very simple way and
leads to accurate non-oscillatory solutions without limiters, entropy correction, or
other dissipative correction. The design principle is analysed for hyperbolic systems
of conservation laws. It is shown to be close to and less dissipative than a genuinely
multidimensional upwinding. Numerical applications are presented for subsonic,
transonic, and supersonic aerodynamic problemsioss Academic Press

1. INTRODUCTION

Over the past three decades, much progress has been made in the development of €
multidimensional Euler solvers for compressible flows. However, it is now clear that
numerical method is perfectly suited to all types of flow problems. The design of an opt
method depends on several conditions, such as the Mach number range, the ste
unsteady flow character, and the role of boundary conditions. For instance, for calcul
an unsteady flow governed by interactions of fast and strong waves with discontinu
the most important features for the solver are robustness and good capturing prog
of moving strong shocks and contact discontinuities. In classical aerodynamics, the
requirements are not exactly the same. Calculating a steady flow over an airfoil requi
method able to converge quickly towards a steady-state and to give very accurate r
around a curved wall.

This work is devoted to the construction of numerical methods for aerodynamic aj
cations, mostly in a steady transonic regime but also in subsonic or low supersonic reg
with possible extensions to slow unsteady problems, i.e., a problem evolving wi
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446 HUANG AND LERAT

characteristic time much greater than the acoustic characteristic time (e.g., flow ove
oscillating airfoil). For this type of application, we consider second-order accurate fini
volume methods on structured meshes. Since shock waves are not very strong and are s
or nearly steady, it is possible to construct simple methods involving no flux limitation
artificial viscosity correction and thus no tuning parameter. This means that we look
schemes having an internal numerical dissipation sufficient to ensure stability and a
spurious oscillations but weak enough to preserve a high accuracy.

Space-centered methods usually require extra dissipation terms. One exception is
implicit centered method proposed by the second author in the early eighties [10, 11,
15]. Using a 3 point-stencil ind space dimensioh,this method is based on a kind of
Lax—Wendroff approximation and is unconditionally stable and dissipative in the sense
Kreiss. It has been applied to two- and three-dimensional steady transonic flow proble
without any correction (see the review paper [12]). Since there is no limiter, the sche
is really second-order accurate. The numerical shock profiles can be sharp and ali
non-oscillatory. However, the scheme produces some dependence of the numerical s
structures on the time-step, or more precisely on the CFL number used to reach the st
state. Furthermore, some correction should be applied in unsteady cases to prevent spt
oscillations.

The alternative to centered differencing is upwinding. Upwind methods are genere
robust and non-oscillatory and can give CFL independent steady solutions. The basic
scheme [20] is almost perfect for 1-D steady flow computation: it is first-order accur:
and total-variation diminishing (TVD), but it becomes second-order accurate at steady s
and produces shock profiles over one or two mesh cells only. Unfortunately, its straight
ward extension to several space-dimensions does not preserve the second-order accur
steady-state and spreads the discontinuities inclined with respect to the mesh lines. Se
approaches have been proposed to recover the second-order accuracy in most part
flow, for instance the MUSCL method of Van Leer [23], the anti-diffusive flux addition o
Harten [4], or the flux limitation of Sweby [22]. These approaches are accurate, but tt
introduce some nonlinearities in the scheme, which is not favourable to derive a lines
implicit version with a good convergence to the steady state. Besides, they split the ¢
tial approximation in each space direction. In recent years, many efforts have been dor
develop genuinely multidimensional upwind methods. Colella [1] has calculated the nur
ical fluxes by solving the characteristic form of the full multidimensional equations at tl
cell faces. A rotated Riemann solver has been proposed in the works oétaly17] and
Hirschetal. [6, 7] and some elementary wave models have been studied by Roe [21] and
and Jeltsch [3]. The numerical schemes so constructed use no limiter and stay in linear
when applied to a linear hyperbolic problem. They can sharply capture the discontinui
aligned or not with the mesh lines, even though they remain first-order accurate.

The aim of the present paper is to develop a scheme for multidimensional problems
collects together the advantages of the Lerat centered scheme and the Roe upwind scl
Since the calculation of steady flows is our main concern, we want to avoid the use
limiters or other switch-like ingredients that can prevent the scheme from converging to
steady-state by inducing limiting cycles. The new scheme that we want to construct shc
satisfy the following properties:

1 More precisely, the method involvest12d? points only, that is 3 points fat = 1, 9 points ford = 2 and 19
points ford = 3.
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e compactness (at most points ind dimension)

e truly 2nd order accuracy at steady-state

e no need of limiters for transonic flow problems

o stability and efficiency for large CFL numbers

e numerical steady solutions not depending on the CFL number.

The basic idea relies on the observation that in 1-D the explicit stage of the Lerat sch
i.e., the classical Lax—Wendroff scheme, can be easily transformed into the Roe scl
by using a special time-step in the numerical flux, namely a matricial characteristic til
step. Since the Roe scheme is an excellent candidate for calculating 1-D steady flow
is difficult to extend to multidimensional problems with a second-order accuracy, we \
consider the multidimensional Lerat scheme and modify its time-step for producing
upwinding effect in a simple way. As it will be shown, this can be done by keeping the g«
features of both schemes, that is, ensuring all the above properties.

The present paper is organized as follows. Section 2 presents the idea of upwir
through the characteristic time-step in one space-dimension. Section 3 discusses the
eralization of this idea to scalar two-dimensional problems and analyzes some nume
difficulties. It is notably found that, for the stability reasons, the straightforward extens
direction by direction cannot be used. The correct treatment turns out to be quite sir
since it comes to use the smallest of two 1-D characteristic time-steps in a Lax—\Went
formulation. Section 4 shows that this treatment is close to and less dissipative than a
uinely multidimensional upwinding. Section 5 extends the idea to 2-D hyperbolic systen
conservation laws. Then, Section 6 presents the detailed space-approximation togethe
an implicit time-discretization leading to unconditional linear stability. Finally, numeric
applications of the new scheme are presented in Section 7 for two-dimensional subs
transonic, and supersonic flow problems.

2. UPWINDING THROUGH A CHARACTERISTIC TIME-STEP IN 1-D
2.1. Lax—Wendroff and Roe Schemes
Let us begin with the scalar conservation law,
wy + f(w)x =0 @
and consider difference schemes in conservative form,
Aw; =—0(hj+;—hj_%), (2)

wherew; = w] denotes the numerical solution at time levet n At and pointx = jéx,
o is the step ratio

At

o=—,
&X

hj+@/2 is the numerical flux atj + %)(Sx andA is the time-difference operator,

RN o A ¢ |
Aw,—wj wj.
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Introducing also the spatial operators,

(Bv)j11 = Vj41 — V]
1 3)
(o)1 = E(Uj+1+vj)

the Lax—Wendroff centered scheme [9] and the Roe upwind scheme [20] can be expre
in form (2) with numerical fluxes respectively defined as

1 n
hiys = hﬂ’% = (Mf - EaARéf) 1 (4)
I+3
1 n
his=h= <Mf - §|AR|8w>Hl, (5)

where Ar denotes the Roe average of the flux derivative- df/dw, i.e., in the present
scalar case,

(8f)j+%/(8w)j+1 if 5wj+% #0

2

(AR)j41 =
Rii+z {A(w]’) otherwise.

It is well known that the Lax—Wendroff scheme (2), (4) is second-order accurate and n
produce spurious oscillations around discontinuities. Its steady solutions satisfy

1
(Mf — —aAR8f> = const
2

and thus depend on the time-step or more precisely on the CFL nhumber,
CFL= mjax(cr|AR|j+%).

Spurious oscillations increase as the CFL number decreases and the scheme tends to
the simple centered scheme as the CFL number goes to zero. An efficient way to ge
of these oscillations is to use large CFL numbers. This can be done by adding to the L
Wendroff scheme the Lerat implicit stage [10] as

Awj — %aza[Aés(Aw)]j = —o (8h™Y;. (6)

Scheme (6) is second-order accurate, always linearly stable, andsgeady solutions
without oscillations for CFL numbers large enough.

Let us now turn to the Roe scheme (2) and (5). In general, this scheme is first-or
accurate, but at steady-state it reduces to

shR
§X i

and becomesecond-order accurajdecause the numerical flux (5) can also be written a

n

1
th+% = (y,f — Esgn(AR)af>

i+3
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so that for any smooth solution df(w)x = 0, we have

of
<§) = (Fj43 + 06X = 06X
1+3

and

R
<ﬁ> = <M> +O6X%) = ()] + O6X3).
X i 86X i

Moreover the exact steady solution is a solution of the Roe scheme in the present 1-D
but all that does not remain true in several space-dimensions.

The Roe scheme is linearly stable and TVD for GFLL. Contrary to the Lax—Wendroff
scheme, its steady solution does not depend on the CFL number. Shock profiles are n
tonic and spread over one or two mesh cells.

2.2. Transforming One into the Other

The Lax—Wendroff scheme can be easily transformed into the Roe scheme by u
a special time-step called the characteristic time-gt€p The latter represents the time
necessary for covering the mesh sszeat the characteristic speéd More precisely, it is
defined on the cell facg + 1) §x by

Atjc+%|AR|j+% = 8X. (7)

By replacing the time-stept by Atjcﬂl/z) in the Lax—Wendroff numerical flux (4) but not
in the conservative form (2), one gets the modified numerical flux

n

i+3
where
Cc
Uc _ At]+%
+: T sx
Using (7) the above expression reads
c 1 "
LW _ _ hR
(hj+%) = (/Lf - ZSQV(AR)M>j+1 =Ny
2

where sgn denotes the sign function. Thus, in this simple 1-D situation, a second-c
centered scheme has been perfectly transformed into an upwind scheme owing t
characteristic time-step and this transformationgraserved the second-order accuracy a
steady-state

The idea of a characteristic time-step seems to have been first introduced in 199
Powell and Van Leer [19]. The purpose was different since it concerns the speed up ¢
convergence to the steady-state of an upwind scheme (the characteristic time-step wa
in (2), i.e., was applied to the unsteady term). The characteristic time-step has beer
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considered by Mortoet al. [18] for a cell-vertex scheme in one dimension. In the preser
paper, our aim is to take benefit of the relationship between the Lax—Wendroff and F
schemes for investigating a simple upwinding technique able to give steady solutions \
a second-order accuracy. This follows a first work that we presented at the ECCOMAS
Conference [8].

Note that the characteristic time-step definition (7) corresponds to a local CFL num
equal to one in the whole mesh. Such a small CFL humber could seem to be unfavour
to a fast convergence to the steady-state. This is not the case because the charact
time-step does not apply on the conservative form (2), i.e., on the discretisation of
unsteady termwy. It only applies on the time-step involved in the Lax—Wendroff numerica
flux. As we will see in Section 6, this allows the development of efficient implicit version
of the method with large (classical) CFL numbers. Obviously, a future improvement of t
method could consist in using a second characteristic time-step associated with a large
CFL number for the unsteady term. For the system case, this could be viewed as a kir
preconditioning.

2.3. Characteristic Time-Step for 1-D Hyperbolic Systems

Consider now a hyperbolic system of conservation laws in the form (1). The La
Wendroff and Roe schemes read as above exceptitlaatd f (w) are now vector-valued
and the Roe averagé\r)j (1,2 becomes a matrix (see [20]). Defining the characteristi
time-step by the following analogue of (7)

Atj°+%|AR|j+% = éx|1 (8)
or by
Uf+%|AR|j+% =1, 9)

wherel is an identity matrix, the relationship between both schemes is unchanged, exc
Atf, 1/2 andof, 4, are now matrix-valued.

Note that the characteristic time-step matrix is not defined when the Roe average h
zero eigenvalue (for instance at a sonic point), but the useful quantities, that is, the prod
on the left-hand side of (8) or (9), are still well defined.

3. CHARACTERISTIC TIME-STEP FOR 2-D SCALAR EQUATIONS
3.1. A Simple Extension Direction by Direction
For the 2-D scalar equation
wy + f(w)x +gw)y =0 (10)

the Lax—Wendroff time discretization can be written as

A
A—'f + f(w)x + gw)y = P(w) (11)
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with
1 1
P(w) = E[AtA( fx + 9y)lx + E[AtB(fx + gy)ly, (12)

whereA = df/dw andB = dg/dw. The time-step has been inserted inside the brackets
get conservation in caget would not be uniform. Space discretization is purely centere

In addition to ensuring the second-order accuracy in time, the opdPatorrects the
destabilizing effect of the Euler forward approximatiam /At. To check that the operator
P does produce a dissipative effect, we rewrite it as

1 2 1 2
P(w) = E[At(A wx + ABwy)]x + E[At(Bwa + B wy)ly
and consider the associated quadratic form

At
Q= 7(Azs2 + 2ABEn + B%p?)

1
= - X'MX
2

with

L _.[A2 AB
Ll el B

Dissipativity in a broad sense of the operaBmeans that the quadratic for@ is non-
negative definite, i.e., the eigenvalues of the symmetric mitrace positive or null. Here,
these eigenvalues are precisaly( A% + B?) and 0.

The straightforward way to transform the Lax—Wendroff scheme by modifying the tin
step in the operatd? is to proceed direction by direction, that is, to define two characteris
time-steps similarly as in 1-D:

AtE|A| = 8x 13
AtS|B| = 8y.

The semi-discrete expression of the modified scheme stays in form (11) with the

right-hand side,

) )
P'(w) = ?X[sgn(A)( fo+ gl + %’[sgn(B)( fe+ ayly.

The corresponding quadratic form is

1
f= ZX'M'X
Q 2

with

;| 8X]A] C
M _{ C 8y|BJ’
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where
1
C= > sgnAB)(6x|B| + sy|A].
Eigenvalues oM’ are non-negative if and only if
(8x|B| — 8y|AD? < 0.

Therefore the new operator is no longer dissipative, except if

A B

IA_ 1Bl (14)

8X 8y
This very special case corresponds to an advection along one of the mesh diagonal
general, the operatd?’ is not dissipative and it is easy to show that the fully discret
scheme gets unstable.

3.2. A Better Extension

Firstwe note that the definition (13) and the condition (14) yislfl= AtS, i.e., the equal-
ity of the two characteristic time-steps. Generally speaking, consider the Lax—Wend!
operatorP with two arbitrary time-stepat; andAt,, that is,

1 1
P"(w) = E[AHA( fx +gy)lx + E[AtzB( fx + gyly.
Dissipativity of P” is tantamount to
[(Aty — At) ABJ® < 0

and thus toAt; = At,. In other words, stable modifications can only be obtained by usir
a single time-step in the 2-D Lax—Wendroff operator.
To get stability, we now use an unique time-stefy and relax the constraints (13) as

At|A| = SxP
(15)
At®|B| = SyW.
The operatoiP in (11) becomes
c 8X 3y
P*(w) = S [®sgriA (fx + gy)lx + 5 [W sgnB)(fx + gy)ly- (16)

Let us now determine adequate coefficiehtandW. First, to define an uniquat® from
the two relations (15), the following compatibility condition should hold:

A B
1ALy, _ 1Bl (17)
8X 8y

For stability reasons, we require

®>0 and WV =>0. (18)
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Consider now a one-dimensional problem. Wheg 0 andB = 0, condition (17) yields
¥ = 0 and the operator (16) reduces to

86X
Similarly, whenA =0 andB = 0, the operator becomes
8y
7[\IJ| B|wy]y.
Therefore, in order that the scheme reduce to the Roe scheme for 1-D problems, we pre:
(B=0=>®=1 and (A=0=WU=1). (19)

Finally, we look for functionsb andW that satisfy the constraints (17)—(19) and minimiz
the distance between the new scheme and the Roe scheme, i.e., minimize the quanti

|® — 1]+ |¥ — 1]. (20)

This optimization problem is solved by consideri@gand¥ as functions of the advection
direction

O = P(a), v =VY(a),

where
3x|B|
o= . 21
Syl Al (1)
In terms of the parameter, the constraints (17)—(19) respectively read
V(a) = ad(a)
P(a) >0 (22)

®0) =1 and @(x) ~1/a, asa — oo.

Quantity (20) is optimized for each value of the variad|e.e., for a givere > 0, we look
for z= ® (@) > 0 minimizing

1(2=z— 1+ |ez—1].

By considering the cases9« < 1 andx > 1, the optimal functior is found to be

1 fo<ac<1
®le) = 0—1( if o > 1.

and, consequently

o f0<a<1
‘I’(Ol)Z{ )
1 ifa>1
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Let us emphasize that < 1 (respa > 1) expresses thaf\|/§x is greater (resp. lower)
than|B|/dy i.e., that the advection direction is between xhdirection (respy-direction)
and a mesh diagonal; in other words, thdirection (respy-direction) is dominant.

Now, observe that the optimal solution can also be written as

. 1 ) SY|A|
d=min(l, — | =min{ 1, ——
o 8X|B]|

5 (23)
)
¥ =min(l, o) = min(l, x| |>
8yl Al
so that, from (15), it corresponds to
. [ 8x &y .
At = mln(—, —) = min (AtS, AtS). 24

The 2-D characteristic time-step is thereforeshmllest of the two 1-D characteristic time-
steps It is the time for a particle moving at speedl, B) to cross a mesh cell starting from
a vertex.

4. PRESENT APPROACH COMPARED TO GENUINELY
MULTIDIMENSIONAL UPWINDING

It is well known that for many upwind schemes on Cartesian grids, the numerical dis
pation is minimal when the advection velocity is parallel to one of the mesh directions.
Consider the linear scalar model

wt + Awx + Bwy =0, (25)

whereAandB are two constants. Suppose that the advection velocity Goeni A%+ B2)Y/2
is not null and define a new coordinate systed) y') by rotating the basic frame with an
angled € [0, 2r),

X' = xcosf + ysinf

. (26)
y' = —Xxsiné + y cosh.
In the new coordinates, Eq. (25) becomes
wy + Awy + B'wy =0, 27)

where

A = Acost + Bsing
B’ = —Asind + B cosp.

By choosing the anglé, such that

A . B
costy = c and Sindy = c
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Eq. (27) reduces to
wt + Cwy = 0. (28)

Let us now apply the Roe scheme to Eq. (28) with a $t€p SinceC > 0, this 1-D
scheme can be simply expressed as

Aw 5X
A—t + wa, = 7CU)X'X', (29)

where the derivatives should be replaced by centered differences.
For the choice of the stejx’, we require that it varies continuously betwelen(when
B = 0) andsy (when A = 0). Using (26), we take
58X’ = |coshHy|8X + [Sinby|dy. (30)
Expressing scheme (29) in the original coordinates/f, we have
. 1
Wy = COSHowy + SiNfowy = E(wa + Bwy)

1
Wy = a[A(wa + Bwy)x + B(Awy + Bwy)y].

Therefore, scheme (29) corresponds to

Aw
where
8X 3y
Po(w) = 7[% sgnA)(fx + gy)x + 5[% sgn(B)(fx + gy)ly (32)
with f = Aw, g = Bw, and
dg = SXIAL _ |costy| | |cosby| + |SinG, |8y = 1+or®
0= %x C 0 0 sx ) ~ 1+ a2r2
v — 8x'|B| o
0 — 8y C = 0®o,

whereq is still defined by (21) and is the mesh aspect-ratio,

r=

86X

We observe that the genuinely multidimensional scheme (31)—(32)—in which the sy
derivatives should be replaced by centered differences—is similar to the scheme (11
(16) constructed in the previous section from characteristic time-stepping. The only dif
ence lies in the coefficients in the right-hand side. In place of the coefficien{pa¥),
we now have(®g, Vo). It turns out that the new coefficients satisfy the three constrair
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FIG. 1. Coefficients® (in full line) and ®, versus the orientatioa, for the mesh aspect-ratios= 0.5, 1,
and 2.

(22) prescribed for the old ones and thus are close to them. Furthermore, it is easy to cl
that

O <Py W=y
® = inf [Oh% ¥ = inf Y.
r>0 r>0

The coefficientd versus the orientatiamis shown in Fig. 1 and compared to the coefficient
®, for three values of the step ratioThus, the scheme (11) and (16), deduced from a Lax
Wendroff formulation using a characteristic time-step, is close tdessldissipativéhan
the multidimensional upwind scheme (31) and (32). Both schemes are really second-o
accurate at steady-state owing to the mixed derivatives in their dissipative ofe @t&.

5. EXTENSION TO 2-D HYPERBOLIC SYSTEMS

For extending the present approach to a general two-dimensional hyperbolic syster
conservation laws, the key point is of course to define the characteristic timasiein
one space-dimension, a matricisll® has easily been defined by (8). For a two-dimensione
scalar problem, the corredt® is given by (24). Consider now Eq. (10) where the state
w and the fluxesf (w) and g(w) in the x- and y-directions are now vector-valued. A
simple situation occurs when the flux Jacobian matrigé@s) and B(w) commute. In this
case, they can be simultaneously diagonalized and we are brought back to the scalar
Unfortunately, for the Euler equation8(w) and B(w) do not commute and the extension
is not so direct.

For the general case, we present here an approximate extension that results in an
implementation. For the sake of simplicity, we choose the matdcaadW¥ such that:
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(i) the ® commute withA andW¥ with B,

OA = AD

33
VB = BV (33)

(ii) the eigenvalues o andW¥ are defined by the following simple generalization o

(23),
- sy|%
Ay = min(l, Syl >
3xm(B)

i sx|A
Ay = min( 1, 4o ,
sym(A)

wherer!y denotes théth eigenvalue of,

(34)

m(A) = min %% |
|

and the same for) andm(B).

Let alsoTa (resp.Tg) be the matrix whose column vectors are the right eigenvectors
A (resp.B), so that

A=TaAATS?t
B=TgAsTg"

where, for any square matriM, Ay = Diag[kf\i,,)]. Owing to (33), the matrice® and W
can be expressed as

® = TahoTat
U =TgAyTgt

The corresponding characteristic time-step matrices are still defined as

AtS|Al = sxd
AtS|B| = syw

but they are no longer the same. For the first one, we get

AtCTAAWT‘l:TADiag min| §x 8y|)&)| Tt
(O] A ’ m(B) A

and thus

At = Ta Diag

. dX 3y _1
m|n<W, W)]TA (35)
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which expresses that this time-step matrix has the same eigenveckaaisdds eigenvalues
are similar to (24), except thay/|xg)| is replaced byy/m(B), the greatest time-step in
the y-direction. Similarly, we obtain

Aty =Ts Dlag[ m|n< 8();) oy )1 Tg (36)

Expressions (35) and (36) can also be written in the condensed form

AtS = min(8x| A7, sy p(B™H1)
(37)
AtS = min(dx p(A™H1, 8y|B71)),

wherep denotes the spectral radius of a matrix.
In the particular case whei = 0 (1-D problem),At§ reduces to the previous charac-
teristic time-step matrix

Ate = Sx|A 7

In the 2-D scalar case, from (37) we recover

8X &
Ao = A _m”<|A| |E)a/|>

For the practical application to a 2-D hyperbolic system, the method is expressed as

A
A—lf + f(w)x + gw)y = PS(w), (38)

where the operatdP® is defined by (16), that is,

X 1)
Po(w) = S [/ (f+ Gyl + S (W (F+ gy, (39)
with the coefficient matrices

®' = dsgnA) = Ta Diag[)»gz]TKl
(40)
W' = WsgnB) = Tg Diag[1})] Tg ™,
where

)\.(I) — Sgr()\.(l)))\.(l)

(41)
I I I
Ay = sgn(x§)Ay).

6. FULLY DISCRETE IMPLICIT SCHEME

Let us now present the fully discrete form of the method, based on a centered appr
mation of (38)—(41).
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6.1. Explicit Stage

To ensure stability and dissipation in the sense of Kreiss, we adopt the Lerat formule
of the Lax—Wendroff method (see [12]). Itinvolves a predictor step for each space-direct

Similarly as in 1-D, we introduce the following discrete operators for a mesh funct
v] defined at = nAt, x = j§x, andy = kdy on a Cartesian mesh:

o .n+1 n
Avj,k—vj'k _vj,k

_.n n

(51U)j+§,k = Vjtak — Vjk
n n

(820)j 141 = Vi1~ Vjk

(H1v)j 1k = (Vak+0k)

(U?.k+1 + U?,k)'

NI NI

(MZU)j,kJr% =

The two predictors are defined on the cell interface as

8X n
(pl)H%,k = |81 f + —p1d2120

3y j+3.k
sy N (42)
(P2t = (M251M1f +529)
1.K+3 SX j,k+%
Using these predictors, the method (38)—(41) is discretized as
d1h 3oh
Awjx = —At (g + E) (43)
8X 8Y /jxk
with the numerical fluxes
1 n
(hy)j1e= (le - écb/pl)
j+3.k
(44)

1 n
(h2)jy1 = (Mzg - E‘I’/p2> )
j.k+3

where the matrice®’ andW’ are computed from (40)—(41) and (34) using Roe averages
(j + 3.0 and(j, k+ 3).

The above scheme makes use of 9 points only (19 points in 3-D). It is $rdgnd-
order accurate at steady-stateecause for a smooth solutianof

f(w)x + g(w)y = 0,
andO(8y) = O(8x), one obtains
(P 41k = X(Fx+9y)j 1y + Ox3) = O(8x3)

(P ksy = Y(Fu+ Gy)j ks s +OEX) = OGXY)
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FIG. 2. Stability domains (inside the closed curve in bold line) in termsict 4AandB = $!B. (a)
Lax-Wendroff scheme. (b) Roe scheme (1st order). (c) Present explicit scheme.
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and, by substitution into (44),

81h 8-h Syt 8
(¥+£) _ ( 1M1 n 2129
8X 8y /i 84X 8y

) + O6x?)
j.k

= (fx +9y)jk + OBX?).

But, contrary to the original Lax-Wendroff scheme, the numerical steady solution of t
present scheme does not depend on the time-step used.

The stability of the present explicit scheme has been studied numerically for a 2
scalar problem with a constant advection velocify B). Its stability domain is shown
in Fig. 2 and compared to those of Lax—Wendroff and Roe schemes. In this figure,
horizontal axis represents= St Aand the vertical axi® = SA—)} B. The stability domain of
the scheme (43)—(44) is slightly larger than for the Lax—Wendroff scheme and very cl
to the stability domain of the first-order Roe scheme. It can be approximately expresse:
the CFL criterion

|Al + Bl < 1,

A
At u+@ 51
8X 3y

A sufficient stability condition can also be written as
A2 BI\1"? 2
38X 3y 2

For improving the efficiency of steady-state calculations, we add to the above schen
suitable implicit stage. By applying the Euler backward time-discretization, we transfo
the scheme (42)—(44) into

Aw ) hn+l 5 hn+l
(
jk

that is,

6.2. Implicit Scheme

At 8x sy

in which the numerical fluxes are now taken at titne+ 1) At. After a linearization, this
implicit scheme takes the form

(HAw)jx = AwfY, (45)
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where the right-hand side explicit stagés given by (42)—(44) and{ is the linear implicit
operator.

Now we make two simplifications of the operattr First, we drop the approximation
of the mixed second-order derivatives and then we replace the eigenvalireanofd by
their upper bound in (34), i.e.,

Ay =2y =1
Therefore, the matriced andW are both reduced to the identity matrix and
H=1+H1+Ho, (46)

with the 1-D difference operatofig; and, given by

At 1
HiAw = X {Ml(ARalAw) - 251(|AR|81Aw):|

At 1 (47)
HoAw = 5y |:N«2(BR52AW) - 552(|BR|82AW)]-

The implicit stage (46) is then of Harten type [5]. It involves only three points by directic

The implicit scheme (42)—(44), (45)—(47) has been shown to be always linearly stz
The implicit stage can be solved either by ADI factorization or by alternate line-relaxatiot
Jacobior Gauss—Seidel type following the same lines as in [2] for the Lerat scheme. All
techniques lead to the solution of algebraic linear systems associated to block-tridiac
matrices at each time iteration.

In practice, applying aline-relaxation technique allows the use of CFL numbers upto 1
in our 2-D calculations. On the contrary, applying an ADI factorization yields converger
rate limitations as for many other schemes. The CFL numbers used here with the fac
scheme are of the order of 10.

7. NUMERICAL APPLICATIONS

The present method is validated through the computation of various steady and
unsteady compressible flows governed by the two-dimensional Euler equations

w + f(w)x +9g(w)y =0

with
o pu pv
2
w= | M|, F= | POHP , G= ,(;UU ,
pv puv pve+ P
pE (PE+ pu (PE + p)v

wherep is the densityp the pressurey andv the Cartesian components of the fluid velocity
and E the specific total energy defined by

1
E=e+ E(u2+ v?),
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FIG. 3. The 124x 32 mesh for the NACA0012 airfoil.

e being the specific internal energy. The pressure is relatedatod e by the equation of
state,

p=( —Dpe

with y = 1.4 in our calculations.
The scheme is applied on curvilinear meshes using a cell-centered finite-volume fori
lation. No limiter, entropy correction, or dissipative term is added to the present meth

7.1. Transonic Flow over an Airfoil

We first consider the steady transonic flow over the NACA0012 airfoil at Mach numb
0.85 and zero angle of attack. The flow is symmetric and computed in the upper half don
on a C-mesh composed of 12432 cells (see Fig. 3). On the airfoil, the slip condition is
prescribed and the pressure is deduced from a conservative integral form of the momet
equation projected on the normal to the wall.

The computation starts from an uniform flow and is run with a local time-step associa
with a constant and uniform CFL number. The convergence history of the present impl
method is shown in Fig. 4, using ADI factorization or line Gauss—Seidel relaxation (ALG

ADI-CFL=20 -~
ALGS-CFL=500 ——

500 1000 1500
FIG. 4. Convergence histories for the transonic flow over the NACA0012 airfoil, {lofithe L ,-residual in
terms of time-iterations).
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FIG.5. Pressure contour&yp = 0.04 (left, Lerat scheme; right, present scheme).

in the implicit stage. Thé., residual is reduced by 6 orders of magnitude in about 10(
iterations with ADI ( CFL= 20) and 500 iterations with ALGS (CF& 500).

Concerning the steady numerical solutions, the pressure contours are shown in F
and compared to those of the implicit Lerat scheme of Lax—Wendroff type. Both res
are very similar, which confirms the second-order accuracy of the present method. Fig
compares the entropy contours of the two schemes and reveals a better behaviour f
present method. This is also apparent in Fig. 7 showing the solution on the airfoil, nar
the pressure coefficient

C. — P— P
" (1/2ypuME
and the entropy deviation

S_
w =35
S

wheres = p/p? and the subscripto refers to the freestream. The present scheme give
lower entropy error upstream of the shock and a monotonic numerical shock profile «
two mesh cells only.

Moreover, the present scheme has a steady solution that does not depend on the
number used in the convergence process, contrary to the Lerat scheme (see Figs. 8 a

7.2. Supersonic Flow over an Ellipse

The second application concerns the supersonic flow over an ellipse of aspect-ratio :
Mach number 3 without incidence. This supersonic flow is computed over an half don
on the 32x 32 mesh shown in Fig. 10.

The present scheme has been applied similarly as for the transonic flow problem, e:
that at inflow and outflow, supersonic boundary conditions are used. The numerical soll
is shown in Figs. 11 and 12. The detached shock is well captured: it is sharp and
oscillatory.

FIG. 6. Entropy contoursAs = 0.0005 (left, Lerat scheme; right, present scheme).
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FIG. 7. Pressure coefficient and entropy deviation on the profile (left, Lerat scheme; right, present schem

CFL=2 CFL=5 CFL=100

FIG. 8. Lerat scheme: shock profiles depend on the CFL numbers.

CFL=2 CFL=5 CFL=100

FIG. 9. Present scheme: shock profiles do not depend on the CFL numbers.
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FIG. 10. The 32x 32 mesh for the ellipse.

FIG. 11. Pressure contourgyp = 0.05.
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FIG. 12. Pressure coefficient and entropy deviation on the symmetry axis and the dllipse, 3.
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FIG. 13. The 64x 32 mesh for the cylinder.

7.3. Subsonic Flow over a Circular Cylinder

We now consider a subsonic flow over a circular cylinder at Mach numia&. On
these conditions, the maximal Mach number on the cylinder is slightly lower than one. T
computational domain and the 6432 mesh are shown in Fig. 13. The solution given by
the present scheme is displayed in Figs. 14 and 15. The upstream/downstream symme
perfectly recovered and the entropy deviation is very low (smaller thariG4).

7.4. Transonic Flow in a Compressor Cascade

The present scheme has also been applied to internal flows in turbomachinaries. +
we present a transonic flow calculation in the compressor cascade shown in Fig. 16.
computational domain is bounded by an inlet, an outlet, two blades, and four cut-lines
which periodicity conditions are prescribed. The mesh is composed ok B0cells.

At the inlet boundary, the Mach number is 1.301 and the incidence is about 63.4 degr
At the outlet boundary, the pressure is prescribed. It is equal to 44% of the upstre
stagnation pressure. Onthe two blades, the slip condition is enforced. The periodic boun
condition on the cut-lines is viewed as a matching condition between two subdomains
treated similarly as in [16].

Starting from an uniform flow, the convergence history of the present method is showr
Fig. 17, using ADI factorization or ALGS relaxation in the implicit stage. Theesidual

FIG. 14. Pressure contourdyp = 0.02.
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FIG. 15. Pressure coefficient and entropy deviation on the symmetry axis and the cyhhdes, 0.38.

is reduced by 6 orders of magnitude in about 1600 iterations with ADI (€RD) and
only 70 iterations with ALGS (CFE& 1000). To reach this residual, the CPU time for th
relaxed method is about 16.4 seconds on a CRAY J916 computer, which is nearly ten t
less than with the factored method.

h
kL

FIG. 16. The 120x 30 mesh for the compressor cascade.
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FIG. 17. Convergence histories for the compressor cascade.

The Mach number contours are presented in Fig. 18 and compared to those obtaine
a first-order upwind scheme [20] on the same mesh, also using 3 points per space direc
Owing to its real second-order accuracy, the present scheme gives a much better resol
of the main features of the flow: the weak compression around the leading edge}bek,
and the skewed slip line.

7.5. Slow Unsteady Flow around a Moving Airfoil

We finally consider a slow unsteady problem, that is, the flow over the NACA0012 airfi
in plane motion of great amplitude. The freestream Mach number is 0.536 and there i
incidence. The airfoil moves in the horizontal direction at the speed

Up = —Mpa, sinkt, (48)

whereMy = 0.327, k = 0.185 (reduced frequency), argd, denotes the freestream sound
speed. This is a 2-D simulation of the flow conditions over a section of a helicopter ro
blade near the tip of the blade, studied by Lerat and Sides in 1979 [13]. The Mach nurn
relative to the airfoil has the time-evolution

Mr 0o = My + Mgsinkt.

During the first half-cycle of the periodic evolution (blade forward motion), the relativ
Mach number goes from 0.536 up to 0.863 and down again to 0.536. This yields
formation of a shock wave travelling first downstream, then rapidly upstream and vanish
before reaching the leading edge. During the second half-citle, remains lower than
0.536 and the flow regime is subsonic.

This unsteady problem is solved on a:¥24 mesh moving with the airfoil (see Fig. 19).
The Euler equations are written in a frame attached to the mesh but still use the comporn
of the fluid absolute velocity in the absolute frame, i.e.,

w + [ f(w) — upw]x + g(w)y =0,
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FIG. 18. Mach number contoure®AM = 0.05) in the compressor cascade. (a) First-order upwind schem
(b) Present % 3-point scheme.

wherew, f(w), andg(w) are defined as previously. The slip boundary condition on tl
moving airfoil takes the form

(V—Vo)-n=0,

whereV is the fluid absolute velocity/o = (U, 0)", andn is a normal to the airfoil. For this
unsteady flow calculation, a conservative treatment in time is necessary. This is not the
for the implicit stage (45)—(47) because of the teta{Ard:-) in the difference operator



N
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FIG. 19. The 94x 24 mesh for the moving NACA0012 airfoil.

FIG. 20. Pressure contours around the moving airfgip = 0.075) calculated with CFl= 12. (a)kt = 60°
(M, o, =0.819). (b)kt = 120" (M, ,, = 0.819). (c)kt = 150 (M, ,, = 0.699).
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H, and 2 (BRrd2-) in Hy. To restore conservation, we replace these term& 0%gru1-)
andds,(Bgruz-), respectively, which does not modify the linear properties of the scheme
The initial condition corresponds to a steady flow over the airfdillat = 0.536 and the
solution is advanced using an uniform time-step (&L= 12). Figure 20 shows the isobar
lines calculated at the timéd = 60°, 120°, and 150 during the first period. Note that the
first two instants give the same relative Mach num@ér ., = 0.819); nevertheless the
flow is subsonic fokt = 60° and transonic fokt = 120°. The formation and the excursion
of the shock wave are well represented by the present method and there is no exce

dissipation even though the formal order of accuracy in time is only one.

8. CONCLUSIONS

An very simple multidimensional upwind scheme has been proposed for solving
Euler equations. It is deduced from the Lax—Wendroff type approximation by introduc
some matricial time-step. Involving:3 3 points only in two-dimension, the scheme is truly
second-order accurate at steady state and very close to a genuinely multidimensional uj
method.

Owing to an efficient implicit treatment, the present scheme allows the use of large
numbers and converges quickly to the steady solutions. For various 2-D aerodynamic |
lems, the scheme has produced accurate non-oscillatory solutions without any correc
Numerical shock profiles are sharp even if they are not aligned with the mesh lines.
extension of the method to viscous flow problems is in progress.
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